Electrical Power Engineering

Assis. Prof. / Mohamed Ahmed Ebrahim Mohamed

 $\mathcal{B}\gamma$

E-mail: mohamedahmed_en@yahoo.com

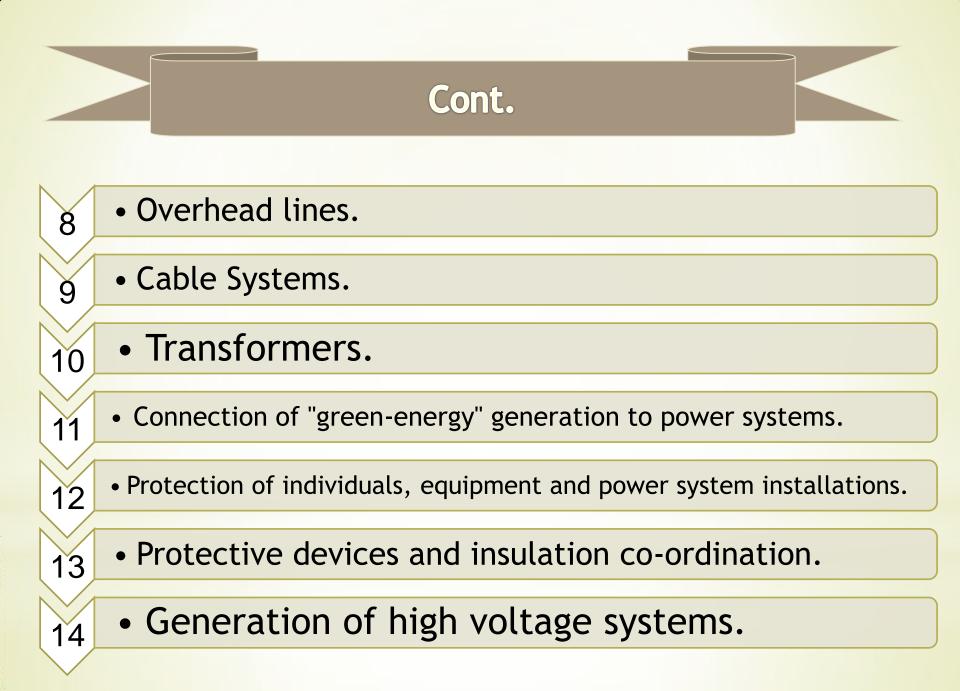
mohamed.mohamed@feng.bu.edu.eg

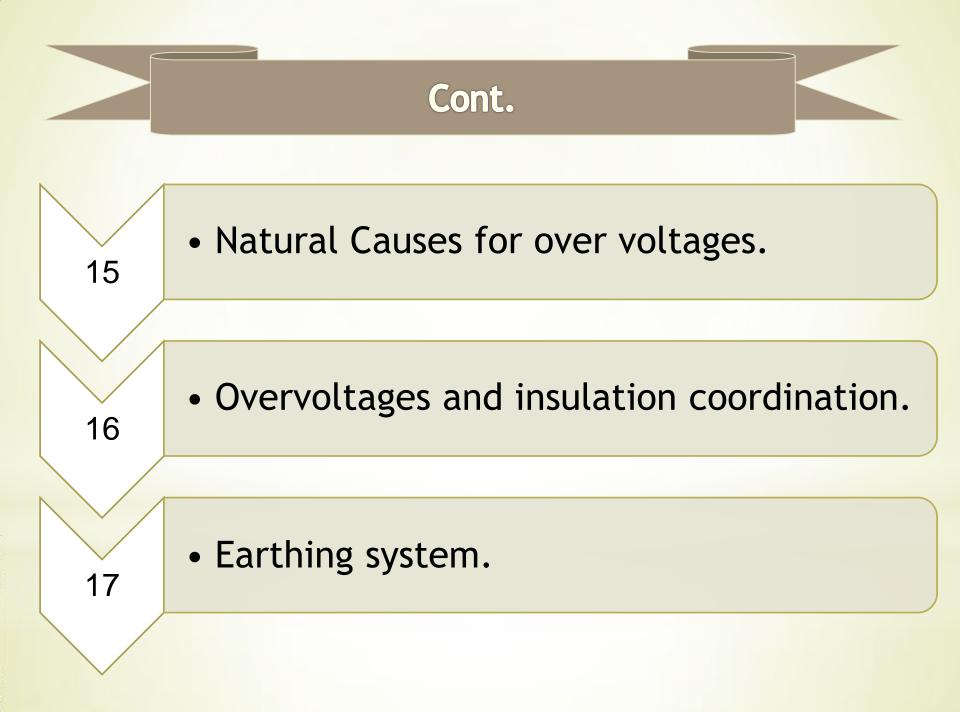
Web site: http://bu.edu.eg/staff/mohamedmohamed033

Syllabus

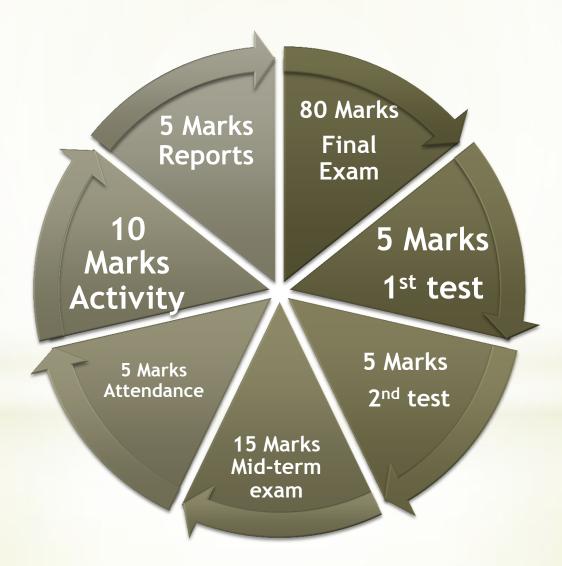
• Introduction.

Ž


Ž


4

5


6

- Fundamentals of electrical power engineering.
- A.C and D.C power transmission.
- A.C and D.C power distribution.
- Interconnections of power systems.
- Transmission and distribution system.
- Substations and circuit breakers.

Marks

Engineering Definition

What is Engineering?

Engineering is the application of math and science by which properties of matter and the sources of energy in nature are made useful. **Engineering Design Definition**

What is Design?

So, Engineering design is.....

Applications & Examples

Why Engineering Design?

Betterment of society through

Design

Manufacturing

Research & Development

Management

Continual Improvement

Logistics

Engineering Process Cycle

- The engineering process cycle is achieve by following 10 stages.
- 1-Identify the problem/product innovation
- 2-Define the working criteria/goals
- **3-Research and gather data**
- 4-Brainstorm / generate creative ideas
- **5-Analyze potential solutions**

Engineering Process Cycle

- 6-Develop and test models.
- 7-Make the decision.
- 8-Communication and specify.
- 9-Implement and commercialize.
- 10-Perform post-implementation review and assessment.

Stage-1: Identifying the problem/product innovation

*Engineers are problem solver: and the problems they solve are often identified as the specific needs and problems of customers

*Example:

*increased gas mileage
*Safety devices for kid, monitors, etc..

Stage-2: Define the working criteria and goals

Key questions

- 1- How much will it cost?
- 2- Will it be difficult to produce?
- 3- What will be the size, weight, strength?
- 4- What will it look like?
- 5- Will it be easy to use?
- 6- Are there legal concerns?
- 7- Will it be reliable?

- 8- Will it meet the standard?
- 9- Is this what the customer truly wanted?
- 10- Will our customers want to purchase it?
- 11- Will customers want to purchase this version instead of a competitor's product?
- 12- Is it feasible for our customer to buy it?

- 1- What information has been published about the problem?
- 2- Is there a solution to the problem that already may be available?
- 3- If the answer to the above is yes, who is producing it?
- 4- What are the advantages of their solution?
- 5- What are the disadvantages to their solution?

- 6- What is the cost?
- 7- Is cost significant issue?
- 8- What is the ratio of time compared to overall cost?
- 9- Are there legal issues to consider?
- 10- Are there environmental concerns which must be considered?

Stage-3: Research and gather data

Information resources can be

- 1- Libraries.
- 2- Professional Society.
- 3- Journal, publications and newsletter.
- 4- Newspapers and magazines.
- 5- Market assessment surveys.

- 6- Government publications
- 7- Patent searches and listings
- 8- Technical salespersons and their references catalogs
- 9- Professional experts including researchers, professors and other scientists
- 10- The competition's product (how they designed it? Disassemble their product and study it

- *Creative problem solving is a major method of generating multiple ideas to a problem by a technique called brainstorming.
- *No preliminary judgments are made about any member's idea, and no negative comments are allowed.
- *The goal here is to list as many ideas as possible.

Stage-5: Analyze potential solutions

- 1- Computer analysis technique.
- 2- Analysis of compatibility.
- 3- Consistency of testing.
- 4- Estimation.
- 5- Economic analysis.
- 6- Common sense.
- 7- Analysis using basic engineering principles and laws.

Stage-6: Develop and test models

- 1- Mathematical models.
- 2- Computer models.
- 3- Scale model.
- 4- Diagrams or graphs.
- 5- Durability.
- 6- Ease assembly.

Stage-6: Develop and test models

- 7- Reliability.
- 8- Strength.
- 9- Environmental.
- 10- Quality consistency.
- 11- Safety.

Stage-7: Decision making

*Cost	Point Available	#1	#2
1- Production Difficulty	20	18	13
2- Size, weight, strength	15	10	12
3- Appearance	10	9	7
4- Convenient to use	5	3	4
5- Safety	10	8	8
6- Legal issues	5	4	3
7- Reliability/Durability	15	13	11
8- Recyclability	10	6	4
9- Customer Appeal	10	9	9

Stage-8: Communication and specify

Communicate data and design for each specific solution and get input.

Stage-9: Implement and commercialize

Implement the best solution. Apply methods of business for profit.

Stage-10: Perform post-implementation review and assessment

*Check if the final product is giving you what you actually wanted from feasibility and if the consumer like it, etc.

For Your Attention

Mohamed Ahmed Ebrahím